I have forgotten
my Password

Or login with:

  • Facebookhttp://facebook.com/
  • Googlehttps://www.google.com/accounts/o8/id
  • Yahoohttps://me.yahoo.com

Tapered Pipe

Pressure head loss within a tapered pipe due to friction
+ View version details

Key Facts

Gyroscopic Couple: The rate of change of angular momentum (\inline \tau) = \inline I\omega\Omega (In the limit).
  • \inline I = Moment of Inertia.
  • \inline \omega = Angular velocity
  • \inline \Omega = Angular velocity of precession.

Overview

MISSING IMAGE!

23287/uniform_run_off_and_tapered_pipes_004.png cannot be found in /users/23287/uniform_run_off_and_tapered_pipes_004.png. Please contact the submission author.

Let the velocity and diameter at the sections 1 and 2 be as shown on the diagram. Consider the head lost over a short length \inline dx which is st a distance \inline x from position 1, and let the velocity and diameter associated with this short length be \inline v and \inline d.

The head lost over the element
=\frac{4fv^2dx}{2dg}

But,
\frac{\displaystyle\frac{1}{2}(d_1-d)}{x}=\tan\theta
Note that \inline \theta is the half angle of the taper.


Or,
x=\frac{d_1-d}{2\tan\theta}
\therefore \;\;\;\;\;\;dx=-\frac{d(d)}{2\tan\theta}
Using the continuity equation:

{d_{1}}^{2}v_1=d^2v
Or,
v=\left ( \frac{d}{d_2} \right )^2v_1

The head lost over the elemental length is given by:

h_{fdx}=\frac{4f}{2dg}\left ( \frac{d_1}{d} \right )^4{v_{1}}^{2}\times- \frac{d(d)}{2\tan \theta}
Thus the head lost over the total length \inline l is:

h_f=-\frac{f{v_{1}}^{2}{d_{1}}^{4}}{g\tan\theta}\int_{d_1}^{d_2}\frac{d(d)}{d^{\;5}}
h_f=\frac{f{v_{1}}^{2}{d_{1}}^{4}}{4g\tan\theta}\left [ \frac{1}{{d_{2}}^{4}} -\frac{1}{{d_{1}}^{4}}\right ]
h_f=\frac{f{v_{1}}^{2}}{4g\tan\theta}\left [ \left (  \frac{d_1}{d_{2} \right )^4} -1\right ]

Putting:
\tan\theta=\frac{1}{2}\times \frac{d_1-d_2}{l}
h_f=\frac{f{v_{1}}^{2}\times 2l}{4g(d_1-d_2)}\left ( \frac{{d_{1}}^{4}-{d_{2}}^{4}}{{d_{2}}^{4}} \right )
=\frac{f{v_{1}}^{2}\times l}{2gd_1d_2}\times \frac{({d_{1}}^{2}-{d_{2}}^{2})({d_{1}}^{2}+{d_{2}}^{2})}{{d_{2}}^{4}}

Thus the head lost can also be written as:

h_f=\frac{f{v_{1}^{2}}\times l}{2g{d_{2}}^{4}}\times (d_1+d_2)({d_{1}}^{2}+{d_{2}}^{2})