taylor table
Computes the first and second derivatives of a function at multiple points.
Controller: CodeCogs
Dependents
Interface
C++
Overview
This module computes either the first or the second numerical derivatives of a function at multiple points and returns a vector with each resulting value. In order to achieve this it uses the component Maths/Calculus/Diff/Taylor. The advantage is that the interval used in computing the numerical derivative need not be symmetrical around either one of the given points. Basically three abscissas are chosen such that where , are real positive constants corresponding to the precision and the symmetry of the interval of differentiation. The derivative is thus approximated at point . Notice however that the functions in this module consider the same precision and symmetry constants when computing the numerical derivative at each of the given points.Authors
- Lucian Bentea (November 2006)
Taylor1 Table
std::vector<double>taylor1_table( | double | (*f)(double)[function pointer] | |
std::vector<double>& | points | ||
double | h | ||
double | gamma = 1.0 | ) |
Example 1
#include <codecogs/maths/calculus/diff/taylor_table.h> #include <math.h> #include <stdio.h> // precision constant #define H 0.0001 // function to differentiate double f(double x) { return cos(x); } // the first derivative of the function, to estimate errors double df(double x) { return -sin(x); } int main() { // display precision printf("\n h = %.4lf\n\n", H); printf(" f(x) = cos(x)\n"); printf("f`(x) = -sin(x)\n\n"); // initialise points table double P[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // compute the first derivative at each point in the table std::vector<double> points(P, P+10), derivatives = Maths::Calculus::Diff::taylor1_table(f, points, H); // display the results, including error estimation printf("Point\tApproximation\t\tActual value\t\tError\n\n"); for (int i = 0; i < 10; i++) printf("x = %d\t%.15lf\t%.15lf\t%.15lf\n", i, derivatives[i], df(points[i]), fabs(df(points[i]) - derivatives[i])); printf("\n"); return 0; }
Output
h = 0.0001 f(x) = cos(x) f`(x) = -sin(x) Point Approximation Actual value Error x = 0 -0.841470983405614 -0.841470984807897 0.000000001402283 x = 1 -0.909297425311170 -0.909297426825682 0.000000001514512 x = 2 -0.141120007824946 -0.141120008059867 0.000000000234921 x = 3 0.756802494046756 0.756802495307928 0.000000001261172 x = 4 0.958924273062761 0.958924274663138 0.000000001600378 x = 5 0.279415497732546 0.279415498198926 0.000000000466379 x = 6 -0.656986597622516 -0.656986598718789 0.000000001096273 x = 7 -0.989358244972195 -0.989358246623382 0.000000001651187 x = 8 -0.412118484553760 -0.412118485241757 0.000000000687997 x = 9 0.544021109981466 0.544021110889370 0.000000000907904
Parameters
f the function to differentiate points the vector of abscissas at which to compute the derivative h the value of the precision constant h gamma Default value = 1.0
Returns
- a vector containing the values of the first derivative of f evaluated at each of the given points
Source Code
Source code is available when you buy a Commercial licence.
Not a member, then Register with CodeCogs. Already a Member, then Login.
Taylor2 Table
std::vector<double>taylor2_table( | double | (*f)(double)[function pointer] | |
std::vector<double>& | points | ||
double | h | ||
double | gamma = 1.0 | ) |
Example 2
#include <codecogs/maths/calculus/diff/taylor_table.h> #include <math.h> #include <stdio.h> // precision constant #define H 0.0001 // function to differentiate double f(double x) { return cos(x); } // the second derivative of the function, to estimate errors double d2f(double x) { return -cos(x); } int main() { // display precision printf("\n h = %.4lf\n\n", H); printf(" f(x) = cos(x)\n"); printf("f``(x) = -cos(x)\n\n"); // initialise points table double P[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // compute the second derivative at each point in the table std::vector<double> points(P, P+10), derivatives = Maths::Calculus::Diff::taylor2_table(f, points, H); // display the results, including error estimation printf("Point\tApproximation\t\tActual value\t\tError\n\n"); for (int i = 0; i < 10; i++) printf("x = %d\t%.15lf\t%.15lf\t%.15lf\n", i, derivatives[i], d2f(points[i]), fabs(d2f(points[i]) - derivatives[i])); printf("\n"); return 0; }
Output
h = 0.0001 f(x) = cos(x) f``(x) = -cos(x) Point Approximation Actual value Error x = 0 -0.540302319866019 -0.540302305868140 0.000000013997879 x = 1 0.416146818496858 0.416146836547142 0.000000018050284 x = 2 0.989992487602587 0.989992496600445 0.000000008997858 x = 3 0.653643589818356 0.653643620863612 0.000000031045256 x = 4 -0.283662183922072 -0.283662185463226 0.000000001541154 x = 5 -0.960170275904858 -0.960170286650366 0.000000010745508 x = 6 -0.753902247021491 -0.753902254343305 0.000000007321814 x = 7 0.145500035223032 0.145500033808614 0.000000001414419 x = 8 0.911130256680583 0.911130261884677 0.000000005204094 x = 9 0.839071522055730 0.839071529076452 0.000000007020722
Parameters
f the function to differentiate points the vector of abscissas at which to compute the derivative h the value of the precision constant h gamma Default value = 1.0
Returns
- a vector containing the values of the second derivative of f evaluated at each of the given points
Source Code
Source code is available when you buy a Commercial licence.
Not a member, then Register with CodeCogs. Already a Member, then Login.