I have forgotten
my Password

Or login with:

  • Facebookhttp://facebook.com/
  • Googlehttps://www.google.com/accounts/o8/id
  • Yahoohttps://me.yahoo.com
COST (GBP)
this unit 2.00
sub units 0.00
+
0

trapezoidal

Computes the definite integral of a function using the trapezoidal rule.
Controller: CodeCogs

Interface

C++
Excel

Overview

This module computes the area beneath either a user supplied function or a set of discrete points, using an approximation which assumes the function is linear between each two consecutive points.

Consider a two times differentiable function \inline f:I \subset \mathbb{R} \rightarrow \mathbb{R}, two distinct abscissas \inline a < b \in I and a positive integer \inline n. Then the following approximation holds:

with an error bound of:

This is a quadrature formula known as the trapezoidal rule. From the formula of the error bound you may notice that e.g. if one doubles the number of points \inline n, the approximation error is decreased four times. To better understand how this rule works, observe the following picture - the area between abscissas \inline x_1 and \inline x_2 is approximated by a trapezoid.

MISSING IMAGE!

1/Trapezoidal_Rule-378.gif cannot be found in /users/1/Trapezoidal_Rule-378.gif. Please contact the submission author.

Below you will find examples that show how to use each version of the function and the error estimates in each case.

References:

Authors

Lucian Bentea (September 2006)

Trapezoidal

 
doubletrapezoidalintn
double(*f)(double)[function pointer]
doublea
doubleb )
This version is to be used when you wish to pass the function to integrate as an argument, instead of passing an array with its values at distinct points.

Example 1

In what follows an approximation is found for the definite integral and the absolute error from its actual value is estimated.
#include <codecogs/maths/calculus/quadrature/trapezoidal.h>
#include <stdio.h>
#include <math.h>
 
// number of points
#define N 100
 
// function to integrate
double f(double x)
{
  return sin(x);
}
 
// the primitive of f, to estimate errors
double pf(double x)
{
  return -cos(x);
}
 
int main()
{
  // compute the approximate area
  double fi = Maths::Calculus::Quadrature::trapezoidal(N, f, 1, 3),
 
  // use the Leibniz-Newton formula to find a more precise estimate
  realfi = pf(3) - pf(1);
 
  // display problem data
  printf("      f(x) = sin(x)\n");
  printf("    points = %d\n\n", N);
 
  // display the result and error estimate
  printf("   I(1, 3) = %.15lf\n", fi);
  printf("real value = %.15lf\n", realfi);
  printf("     error = %.15lf\n\n", fabs(fi - realfi));
 
  return 0;
}

Output

f(x) = sin(x)
    points = 100
 
   I(1, 3) = 1.530243792301766
real value = 1.530294802468585
     error = 0.000051010166819

Parameters

nthe number of sample points of the function f, from which to approximate
fthe function to integrate
athe inferior limit of integration
bthe superior limit of integration

Returns

The definite integral of the given function from a to b.
Source Code

Source code is available when you buy a Commercial licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.


Trapezoidal

 
doubletrapezoidalintn
const double*values
doublea
doubleb )
This version is to be used when the function is not known analytically, but a table with its values at equally spaced abscissas is available.

Example 2

The code below gives an approximation for the definite integral and estimates the absolute error from its actual value.
#include <codecogs/maths/calculus/quadrature/trapezoidal.h>
#include <stdio.h>
#include <math.h>
 
// the primitive of f, to estimate errors
double pf(double x)
{
  return 2*sqrt(x*x*x)/3;
}
 
int main()
{
  // values of the function at equally spaced abscissas
  double ordinates[7] = {1, 1.0247, 1.04881, 1.07238, 
  1.09544, 1.11803, 1.14017},
 
  // compute the approximate area
  fi = Maths::Calculus::Quadrature::trapezoidal(7, ordinates, 1, 1.3),
 
  // use the Leibniz-Newton formula to find a more precise estimate
  realfi = pf(1.3) - pf(1);
 
  // display problem data
  printf("      f(x) = sqrt(x)\n");
  printf("    points = 7\n\n");
 
  // display the result and error estimate
  printf(" I(1, 1.3) = %.15lf\n", fi);
  printf("real value = %.15lf\n", realfi);
  printf("     error = %.15lf\n\n", fabs(fi - realfi));
 
  return 0;
}

Output

f(x) = sqrt(x)
    points = 7
 
 I(1, 1.3) = 0.321472250000000
real value = 0.321485368419253
     error = 0.000013118419253

Parameters

nthe number of sample points of the function f, from which to approximate
valuesan array with the values of the function at equally spaced abscissas
athe inferior limit of integration
bthe superior limit of integration

Returns

The definite integral of the given function from a to b.
Source Code

Source code is available when you buy a Commercial licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.