i
Modified Bessel function of the first kind of integer order.
Controller: CodeCogs
Contents
Dependents
Interface
C++
Excel
Overview
These function return solutions to the Modified Bessel Function of the first kind. The differential equation where v is a real constant, is called the modified Bessel's equation, with the solution known as the modified Bessel function, with solutions: and , and where where is the gamma function.MISSING IMAGE!
1/besselI-969.gif cannot be found in /users/1/besselI-969.gif. Please contact the submission author.
References:
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.htmlI
doubleI( | double | x | |
int | v | )[inline] |
Accuracy:
<pre> Relative error: arithmetic domain # trials peak rms DEC 0, 30 3400 1.2e-16 2.3e-17 IEEE 0, 30 30000 1.9e-15 2.1e-16</pre>References:
Cephes Math Library Release 2.8: June, 2000Parameters
x value to be transformed. v order of bessel function.
Authors
- Stephen L. Moshier. Copyright 1984, 1987, 2000
Documentation by Will Bateman (August 2005)
Source Code
Source code is available when you agree to a GP Licence or buy a Commercial Licence.
Not a member, then Register with CodeCogs. Already a Member, then Login.
I
doubleI( | double | x | |
double | v | ) |
Accuracy:
<pre> Relative error: arithmetic domain # trials peak rms DEC 0, 30 3400 1.2e-16 2.3e-17 IEEE 0, 30 30000 1.9e-15 2.1e-16</pre>Example:
#include <codecogs/maths/special/bessel/i/i.h> #include <stdio.h> int main() { using namespace Maths::Special::Bessel::I; printf("\n x v=0 v=1 v=2 v=3 v=4 v=5"); for(double x=0; x<6; x++) { printf("\nx=%.1lf",x); for(int v=0;v<=5;v++) printf(" %8.6lf", I(x,v)); } return 0; }
Output:
x v=0 v=1 v=2 v=3 v=4 v=5 x=0.0 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 x=1.0 1.266066 0.565159 0.135748 0.022168 0.002737 0.000271 x=2.0 2.279585 1.590637 0.688948 0.212740 0.050729 0.009826 x=3.0 4.880793 3.953370 2.245212 0.959754 0.325705 0.091206 x=4.0 11.301922 9.759465 6.422189 3.337276 1.416276 0.504724 x=5.0 27.239872 24.335642 17.505615 10.331150 5.108235 2.157975
References:
Cephes Math Library Release 2.8: June, 2000Parameters
x input argument. v order of bessel function.
Authors
- Stephen L. Moshier. Copyright 1984, 1987, 2000
Documentation by Will Bateman (August 2005)
Source Code
Source code is available when you agree to a GP Licence or buy a Commercial Licence.
Not a member, then Register with CodeCogs. Already a Member, then Login.