I have forgotten
my Password

Or login with:

  • Facebookhttp://facebook.com/
  • Googlehttps://www.google.com/accounts/o8/id
  • Yahoohttps://me.yahoo.com
get GPL
COST (GBP)
this unit 0.20
sub units 0.00
+
0

mean

Evaluates the mean of the Bradford distribution PDF.
Controller: CodeCogs

Interface

C++

Mean

 
doublemeandoublea
doubleb
doublec )[inline]
This function evaluates the mean of the Bradford distribution PDF with given arguments, defined by

where

In the example that follows, the mean is evaluated using values of the third parameter from 0.1 up to 0.8 with a step equal to 0.1, while the other two parameters have fixed values, 0 and 1. The maximum number of precision digits, implicitly set to 17, may be changed through the <em> PRECISION </em> define.

Example 1

#include <codecogs/statistics/distributions/continuous/bradford/mean.h>
#include <iostream>
#include <iomanip>
 
#define PRECISION 17
 
int main()
{
  std::cout << "The mean of the Bradford distribution PDF with";
  std::cout << std::endl << "a = 0, b = 1 and " << std::endl;
  std::cout << "c = {0.1, 0.2, ... , 0.7, 0.8} is" << std::endl;
  std::cout << std::endl;
  for (double c = 0.1; c < 0.81; c += 0.1)
  {
    std::cout << std::setprecision(1);
    std::cout << "c = " << std::setw(3) << c << " : ";
    std::cout << std::setprecision(PRECISION);
    std::cout << Stats::Dists::Continuous::Bradford::mean(0.0, 1.0, c);
    std::cout << std::endl;
  }
  return 0;
}

Output

The mean of the Bradford distribution PDF with
a = 0, b = 1 and
c = {0.1, 0.2, ... , 0.7, 0.8} is
 
c = 0.1 : 0.49205868725706231
c = 0.2 : 0.48481494774707845
c = 0.3 : 0.4781613533750686
c = 0.4 : 0.47201341198846192
c = 0.5 : 0.46630346237643167
c = 0.6 : 0.46097647856777624
c = 0.7 : 0.45598710746256077
c = 0.8 : 0.45129752801813683

References

John Burkardt's library of statistical C++ routines, http://www.csit.fsu.edu/~burkardt/cpp_src/prob/prob.html

Parameters

athe first parameter of the distribution (strictly less than b)
bthe second parameter of the distribution
cthe third parameter of the distribution (strictly positive)

Returns

the mean of the Bradford distribution PDF

Authors

Lucian Bentea (September 2005)
Source Code

Source code is available when you agree to a GP Licence or buy a Commercial Licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.