K0
Modified Bessel function of the third kind, with zero order.
Controller: CodeCogs
Contents
Dependents
Interface
C++
Excel
Overview
Modified Bessel function, third kind, order zero. The modified Bessel function of the third kind (or Weber Function) is a linear combination of Bessel functions of the first and second kinds. These are called the Hankel functions of the first and second kinds, and are one of two types of functions known as Hankel functions. The other type of Hankel function is defined by a contour integral. The Bessel K ,, is defined by the following second order differential equation:K0
doubleK0( | double | x | ) |
Accuracy:
Tested at 2000 random points between 0 and 8. Peak absolute error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. <pre> Relative error: domain # trials peak rms 0, 30 30000 1.2e-15 1.6e-16 </pre>Example:
#include <stdio.h> #include <codecogs/maths/special/bessel/k/k0.h> int main() { for(double x=1; x<7; x+=1) { double y=Maths::Special::Bessel::K::K0(x); printf("\n K0(%.1lf)=%lf", x,y); } return 0; }
Output:
K0(1.0)=0.421024 K0(2.0)=0.113894 K0(3.0)=0.034740 K0(4.0)=0.011160 K0(5.0)=0.003691 K0(6.0)=0.001244
References:
Cephes Math Library Release 2.8: June, 2000Parameters
x input argument
Authors
- Stephen L. Moshier. Copyright 1984, 1987, 2000,
Documentation by Nick Owens
Source Code
Source code is available when you agree to a GP Licence or buy a Commercial Licence.
Not a member, then Register with CodeCogs. Already a Member, then Login.
K0 Exp
doubleK0_exp( | double | x | ) |
Accuracy:
<pre> Relative error: domain # trials peak rms 0, 30 30000 1.4e-15 1.4e-16 </pre>Example:
#include <stdio.h> #include <codecogs/maths/special/bessel/k/k0.h> int main() { for(double x=1; x<7; x+=1) { double y=Maths::Special::Bessel::K::K0_exp(x); printf("\n K0_exp(%.1lf)=%lf", x,y); } return 0; }
Output:
K0_exp(1.0)=1.144463 K0_exp(2.0)=0.841568 K0_exp(3.0)=0.697762 K0_exp(4.0)=0.609298 K0_exp(5.0)=0.547808 K0_exp(6.0)=0.501863
References:
Cephes Math Library Release 2.8: June, 2000Parameters
x input argument
Authors
- Stephen L. Moshier. Copyright 1984, 1987, 2000
Documentation by Nick Owens
Source Code
Source code is available when you agree to a GP Licence or buy a Commercial Licence.
Not a member, then Register with CodeCogs. Already a Member, then Login.