gauss
Computes the definite integral of a function using the Gauss quadrature for 3 points.
Controller: CodeCogs
Contents
Interface
C++
Gauss
doublegauss( | double | (*f)(double)[function pointer] | |
double | a | ||
double | b | )[inline] |
Example 1
- In what follows an approximation is found for the definite integral
and the absolute error from its actual value is estimated.
#include <codecogs/maths/calculus/quadrature/gauss.h> #include <stdio.h> #include <math.h> // function to integrate double f(double x) { return sin(x); } // the primitive of f, to estimate errors double pf(double x) { return -cos(x); } int main() { // compute the approximate area double fi = Maths::Calculus::Quadrature::gauss(f, 2, 3), // use the Leibniz-Newton formula to find a more precise estimate realfi = pf(3) - pf(2); // display the result and error estimate printf(" f(x) = sin(x)\n"); printf(" I(2, 3) = %.15lf\n", fi); printf("real value = %.15lf\n", realfi); printf(" error = %.15lf\n\n", fabs(fi - realfi)); return 0; }
Output
f(x) = sin(x) I(2, 3) = 0.573845954654464 real value = 0.573845660053303 error = 0.000000294601161
References
- Mihai Postolache - "Metode Numerice", Editura Sirius
Parameters
f the function to integrate a the inferior limit of integration b the superior limit of integration
Returns
- The definite integral of the given function from a to b.
Authors
- Lucian Bentea (September 2006)
Source Code
Source code is available when you buy a Commercial licence.
Not a member, then Register with CodeCogs. Already a Member, then Login.