DefinitionsWorking substance (WS). The WS is used as the carrier for heat energy. The heat engine carries out the conversion process by a series of changes of state of the WS. The state of the WS is defined by the values of its properties, e.g. pressure, volume, temperature, internal energy, enthalpy. These properties are also sometimes called functions of state.
<br/>
Key facts
Examples of internal combustion engine cycles are the Otto cycle (also known as the Constant Volume cycle), the Joule cycle (also known as the Brayton cycle, or the Constant Pressure cycle), and the Diesel cycle.
The thermal efficiency of the Otto cycle is given by:
where is the compression ratio, and the heat capacity ratio.
The thermal efficiency of the Joule cycle is given by:
where is the pressure ratio, and the heat capacity ratio.
The thermal efficiency of the Diesel cycle is given by:
where is the compression ratio, the expansion ratio during heating (also known as the cut-off ratio), and the heat capacity ratio.
A thermodynamic cycle comprises a series of operations carried out on the working substance (WS) during which heat is supplied, and after which the WS is returned to its original state (for a more comprehensive introduction to thermodynamic cycles also see Thermodynamic Cycles ).
An example of a thermodynamic cycle is the internal combustion engine. In this case, the WS is treated as pure air, the expansions and compressions are reversible and adiabatic, and heat can be added instantaneously if desired. Applications of such cycles are the Otto cycle, the Joule cycle, and the Diesel cycle.
Before discussing these cycles, we first have to introduce the thermal efficiency of a cycle.
The thermal efficiency of a cycle, also denoted by , is a measure of the ability to convert heat energy into work. Therefore, the thermal efficiency can be defined as:
where is the heat rejected in the WS and in losses (for a more detailed discussion see Thermodynamic Cycles ). The thermal efficiency from (2) becomes:
The Otto cycle (also sometimes called the Constant Volume cycle) is diagramed on a pressure - volume () plot in Figure 1, and on a temperature - entropy () plot in Figure 2.
MISSING IMAGE!
746/img_therm30-1.png cannot be found in /users/746/img_therm30-1.png. Please contact the submission author.
MISSING IMAGE!
746/img_therm30-2.png cannot be found in /users/746/img_therm30-2.png. Please contact the submission author.
This cycle consists of an adiabatic compression of the WS (step ), followed by an isochoric heating, i.e. heating at constant volume (step ), then an adiabatic expansion of the WS (step ), and ended with an isochoric cooling which reverts the system back to its original condition (step ).
We know that the heat added or removed from the WS during a process at constant volume can be written as:
where is the number of moles of the WS, the heat capacity at constant volume, and the change in temperature. Hence, for the Otto cycle depicted in Figure 1 and Figure 2, we have that the heat supplied is:
It can be noted that the compression ratio for carburettor engines is about , while for fuel injector engines it increases to around . By using these figures, and also considering a value for the heat capacity ratio of , the thermal efficiency of a petrol/gasoline engine is found to be between and . It can also be noted that for an Otto cycle engine, the ignition is usually performed by using a spark plug ("spark ignition").
Joule Cycle
The Joule cycle (also sometimes called the Brayton cycle, or the Constant Pressure cycle) is a thermodynamic cycle that describes the workings of the gas turbine engine. The Joule cycle is depicted on a plot in Figure 3, and on a plot in Figure 4.
MISSING IMAGE!
746/img_therm31-1.png cannot be found in /users/746/img_therm31-1.png. Please contact the submission author.
MISSING IMAGE!
746/img_therm31-2.png cannot be found in /users/746/img_therm31-2.png. Please contact the submission author.
This cycle consists of a reversible adiabatic (i.e. isentropic) compression of the WS (step ), followed by an isobaric heating (i.e. heating at constant pressure) (step ), then a reversible adiabatic (isentropic) expansion of the WS (step ), and ended with an isobaric cooling which reverts the system back to its initial state (step ).
Similar to equation (6), we can write the heat added or removed from the WS during a process at constant pressure as:
where is the number of moles of the WS, the heat capacity at constant pressure, and the change in temperature. Therefore, for the Joule cycle depicted in Figure 3 and Figure 4, the heat supplied becomes:
The Diesel cycle is diagramed on a plot in Figure 5, and on a plot in Figure 6.
MISSING IMAGE!
746/img_therm32-1.png cannot be found in /users/746/img_therm32-1.png. Please contact the submission author.
MISSING IMAGE!
746/img_therm32-2.png cannot be found in /users/746/img_therm32-2.png. Please contact the submission author.
This cycle consists of a reversible adiabatic (isentropic) compression of the WS (step ), followed by an isobaric heating (step ), then a reversible adiabatic (isentropic) expansion of the WS (step ), and ended with an isochoric cooling which returns the system back to its original state (step ).
Taking into account equations (6) and (22), we can write the heat supplied (at constant pressure, step ) as:
where is the number of moles of the WS, the heat capacity at constant pressure, and the heat capacity at constant volume.
Therefore, the thermal efficiency of the Diesel cycle becomes (see equation 5):
where is the heat capacity ratio (see equation 13).
As for the Diesel engine the WS is again treated as pure air, we can write for the isentropic compression that:
where is the expansion ratio during heating (also called the cut-off ratio).
The temperature from (49) can further be expressed by considering the expression of from (47), as:
Thus, we managed to express , , and all in function of (see equations 47, 50, and 55 respectively). By using these expression forms in equation (42), we get:
It can be noted that the ignition for the Diesel internal combustion engines is done by using a higher compression of the fuel, rather than by using a spark plug as in the case of gasoline powered Otto cycle engines. Therefore, the ignition for Diesel engines is sometimes called a "slow speed compression ignition", in contrast to the "spark ignition" of the Otto engines.
Example:
[imperial]
Example - Properties of a Diesel cycle
Problem
An engine operates under a Diesel cycle with a top pressure of (). The compression ratio is , and the air at the start of compression is at and . If are added during combustion and expansion in accordance to the law , the clearance volume is , the specific heat at constant pressure during combustion is , and also if we are to ignore the fuel mass, find:
A) the pressure, volume, and temperature at each change point in the cycle;
B) the work output of the cycle (in );
C) the thermal efficiency of the cycle.
The corresponding Diesel cycle is diagramed on a plot in Figure E1.
Figure E1
Workings
A) We are going to consider below each stage of the cycle separately.
Stage 1
We know from the hypothesis that the air at the start of compression is at and . Therefore, the initial pressure is:
where is the heat supplied (), the specific heat at constant pressure (), and is the temperature difference expressed in , while is the quantity of gas which is present at a pressure of and at a temperature of . In order to calculate , we can write that:
By replacing all the numerical values in equation (42) (see 1, 5, 6, 7, 13, 27, 29, and 34), and also taking into account that , (see 48), and that , we get the work done in as:
where is the work output, and the heat supplied.
As, in our case, (see 50) and , and also taking into account that , we get the thermal efficiency of the Diesel cycle as: